References

- BROWN, I. D. & WU, K. K. (1976). Acta Cryst. B32, 1957-1959.
- GATEHOUSE, B. M., GREY, I. E., HILL, R. J. & ROSSELL, H. J. (1981). Acta Cryst. B37, 306-312.
- International Tables for X-ray Crystallography (1974). Vol. IV. Tables 2.2A and 2.3.1. Birmingham: Kynoch Press.
- PYATENKO, YU. A. (1971). Izv. Akad. Nauk SSSR Neorg. Mater. 7, 630-633.
- PYATENKO, YU. A. & PUDOVKINA, Z. V. (1961). Kristallografiya, 6, 196–199.
- Rossell, H. J. & Scott, H. G. (1975). J. Solid State Chem. 13, 345-350.
- Rossell, H. J. & Scott, H. G. (1977). J. Phys. (Paris), 38, (Suppl. to No. 12), C7-28-C7-31.
- SHANNON, R. D. (1976). Acta Cryst. A 32, 751-767.

Acta Cryst. (1982). B38, 595-597

in this regard.

position could be described as adopting triangular-

prismatic coordination by O. However, the bond-

strength sums show that such a cation is significantly

underbonded (3.5 valence units), so that the two more

remote O(3), which contribute 0.15 v.u. each, belong to

the coordination figure. Bond-strength sums calculated

for the structure with this cation at $(0, \frac{1}{4}, \frac{1}{8})$ differ significantly from those of the determined structure

only for the atom O(3), whose bonding improves from

1.79 in the former case, to 1.96 v.u. Therefore, this

study has allowed little insight into the unusual cation

behaviour: the more precise results that could be

expected from a single-crystal study may be of benefit

Structure d'un Trimétaphosphate-Tellurate de Rubidium Monohydraté: $Te(OH)_{6}$. $Rb_{3}P_{3}O_{9}$. $H_{2}O$

PAR N. BOUDJADA ET A. DURIF

Laboratoire de Cristallographie, Centre National de la Recherche Scientifique, Laboratoire associé à l'USMG, 166 X, 38042 Grenoble CEDEX, France

(Recu le 5 janvier 1981, accepté le 28 juillet 1981)

Abstract. $Te(OH)_6$. $Rb_3P_3O_9$. H_2O , monoclinic, $P2_1/a$, a = 15.56(1), b = 8.358(3), c = 13.72(1) Å, $\beta =$ 113.27 (5)°, Z = 4. The structure has been solved by direct methods. The final R value is 0.04 for 1833 reflexions. As already described for trimetaphosphates-tellurates of sodium and potassium, P3O9 and TeO_6 anions are independent.

Introduction. Le sel de rubidium Te(OH)₆. Rb₃P₃O₉.-H₂O est le trosième exemple de phosphate-tellurate renfermant un anion cyclique P₃O₉. Son étude structurale montre que, conformément aux résultats des travaux antérieurs sur les sels de sodium: Te(OH)6.-2Na₂P₂O₀.6H₂O (Boudjada, Averbuch-Pouchot & Durif, 1981a) et de potassium: Te(OH)₆.K₃P₃O₉.-2H₂O (Boudjada, Averbuch-Pouchot & Durif, 1981b), les groupements TeO₆ sont indépendants des cycles trimétaphosphates P_3O_9 . Cette absence d'anions mixtes condensés phosphotellurates dans les sels cités cidessus se retrouve dans les monophosphates-tellurates précédemment étudiés: Te(OH)₆. Na₂HPO₄. H₂O et $Te(OH)_6.2(NH_4)_2HPO_4$ (Durif, Averbuch-Pouchot & Guitel, 1979), Te(OH)₆. Rb₂HPO₄. RbH₂PO₄ (Averbuch-Pouchot, Durif & Guitel, 1979), Te(OH)₆.2Ag₂-HPO₄ (Durif & Averbuch-Pouchot, 1981), Te(OH)₆.-

2TlH₂PO₄.Tl₂HPO₄ et Te(OH)₆.2TlH₂PO₄ (Averbuch-Pouchot & Durif, 1981) qui présentent la méme caractéristique: les tétraèdres PO₄ et les groupements TeO₆ forment des entités séparées. Notons que cette particularité se retrouve dans les monoarséniates-tellurates isotypes des monophosphates-tellurates cités plus haut: $Te(OH)_6$. Na₂HAsO₄. H₂O, $Te(OH)_6$. 2(NH₄)₂-HAsO₄ et Te(OH)₆. Rb₂HAsO₄. H₂RbAsO₄ (Averbuch-Pouchot & Durif, 1979).

Les cristaux de Rb₃P₃O₉.Te(OH)₆.H₂O sont des prismes monocliniques incolores; leur longueur peut atteindre 15 mm. Le cristal choisi pour recueillir les données de diffraction était un fragment de prisme, taillé approximativement sous la forme d'un cube d'arête $\simeq 15/100$ mm. A l'aide d'un diffractomètre Philips PW 1100 utilisant la longueur d'onde K_{α} de l'argent (0.5608 Å) monochromatisée par une lame de graphite, 2612 réflexions ont été mesurées parmi lesquelles 1833 indépendantes. Ces mesures ont été effectuées sur un domaine angulaire s'étendant de 3 à 20°(θ). Chaque raie était explorée en balayage ω à la vitesse de 0,02° s⁻¹ dans un zone angulaire de 1,20°; le fond continu était mesuré durant 10 s de part et d'autre de cette zone. Les deux réflexions de référence 218 et 218 n'ont subi aucune variation d'intensité durant la © 1982 International Union of Crystallography

0567-7408/82/020595-03\$01.00

Tableau 1. Coordonnées atomiques (×104) et facteursde température équivalents, avec les écarts types entre
parenthèses

$\boldsymbol{B}_{\mathrm{\acute{e}q}} = \frac{4}{3} \sum_{i} \sum_{j} \beta_{ij} \mathbf{a}_{i} \cdot \mathbf{a}_{j}.$				
	x	У	Ζ	$B_{\mathrm{\acute{e}q}}$ (Å ²)
Te	1541,6 (3)	2805,0 (7)	6739,2 (4)	1,06 (1)
Rb(1)	2234,1 (6)	4963 (1)	9629,6 (7)	1,99 (2)
Rb(2)	4403,5 (6)	1923 (1)	8611,8 (7)	2,09 (2)
Rb(3)	3589,1(7)	3144 (1)	3796,5 (7)	2,31 (2)
P(1)	1293 (1)	2623 (3)	1409 (2)	1,24 (5)
P(2)	4563 (1)	3827 (3)	1271 (2)	1,28 (5)
P(3)	772 (1)	2790 (3)	3216 (2)	1,56 (5)
O(1)	4119 (4)	8846 (8)	2514 (4)	1,76 (16)
O(2)	2310 (4)	8754 (8)	2344 (5)	1,85 (17)
O(3)	3491 (5)	6688 (9)	6071 (5)	2,47 (20)
O(4)	2787 (4)	6633 (8)	3944 (5)	1,69 (16
O(5)	3145 (5)	6068 (8)	2250 (5)	2,23 (17
O(6)	5133 (5)	6767 (11)	7527 (5)	2,66 (18
O(7)	5438 (5)	887 (10)	3695 (5)	2,54 (19
O(8)	4246 (4)	5514 (8)	1232 (6)	2,16 (18
O(9)	4442 (4)	6154 (8)	8830 (5)	1,48 (15
O(10)	3980 (4)	8739 (8)	9491 (5)	1,87 (17
O(11)	3936 (4)	2655 (9)	538 (6)	2,40 (20
O(12)	8895 (4)	6430 (8)	7660 (5)	1,82 (17
O(13)	2240 (4)	1892 (9)	1853 (5)	2,05 (18
O(14)	425 (4)	1768 (9)	5788 (5)	2,15 (16
O(15)	6335 (5)	385 (8)	5816 (5)	1,88 (17
O(W)	8815 (5)	1618 (10)	6108 (6)	3,15 (22

collecte des données. Aucune correction d'absorption n'a été faite en raison des dimensions du cristal et de la longueur d'onde utilisée.

Le groupe d'espace $P2_1/a$ a été retenu en raison des extinctions observées. Les difficultés d'interprétation de la fonction de Patterson nous ont poussé à utiliser les méthodes directes pour la localisation des atomes de Te et de Rb.

Les synthèses de Fourier 'différence' qui ont suivi ont révélé la totalité de l'arrangement atomique. Une série de cycles d'affinements avec les facteurs thermiques isotropes a conduit à une valeur du résidu R de 0,05. Une autre série d'affinements effectuée avec les facteurs thermiques anisotropes sur 1597 réflexions telles que $F_o > 2\sigma_{F_o}$ a abouti à une valeur de R de 0,037. Les coordonnées atomiques ainsi que les facteurs thermiques isotropes B_{eq} de ce composé sont rassemblés dans le Tableau 1.*

Discussion. La Fig. 1 représente une projection de l'ensemble des atomes sur le plan *ac*. Comme cela a été décrit dans les trimétaphosphates-tellurates déjà étudiés, les groupements P_3O_9 et les octaèdres TeO₆

Fig. 1. Projection de l'arrangement atomique de $Te(OH)_6$. $Rb_3P_3O_9$. H_2O sur le plan *ac*.

Fig. 2. Enchaînements des polyèdres de coordination RbO_n avec les anions P_3O_9 et TeO_6 .

sont indépendants. Une schématisation de l'arrangement atomique se traduirait par un édifice composé de plans contenant les anions P₃O₉ et TeO₆, empilés parallèlement à *ac* à des ordonnées y = 0,22, y = 0,28, y = 0.72 et y = 0.78. Dans chacun de ces plans, les octaèdres TeO₆ et les cycles P₃O₉ se rangent parallèlement à l'axe c à des cotes $z = \frac{1}{3}$ et $z = \frac{2}{3}$. Les atomes de tellure et de phosphore sont en position générale. Le Tableau 2 rassemble les principales caractéristiques des anions cycliques P_3O_9 ; elles sont trés voisines de celles des nombreux cycles trimétaphosphates déjà décrits. Le Tableau 3 regroupe les distances Te-O et angles O-Te-O dans l'anion TeO_6 ; l'observation de ces caractéristiques prouve que l'octaèdre TeO₆ est presque régulier. La cohésion de l'édifice cristallin est assurée par les atomes de rubidium qui occupent en position générale, trois sites différents. Leurs enchaînements avec les anions P_3O_9 et TeO₆ sont représentés en Fig. 2. Les atomes Rb(1) sont situés dans des plans ac de cote $y \simeq 0$ et $y \simeq 0.5$. Ils lient tout comme les atomes Rb(3),

^{*} Les listes des facteurs de structure et des paramètres thermiques anisotropes ont été déposées au dépôt d'archives de la British Library Lending Division (Supplementary Publication No. SUP 36339: 14 pp.). On peut en obtenir des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, Angleterre.

Les distances $P-O(\dot{A})$ sont soulignées; les distances $O-O(\dot{A})$ sont inscrites dans le triangle supérieur, les angles $O-P-O(^{\circ})$ dans le triangle inférieur.

)O₄ O(9) <u>1,621 (7)</u> 111,3 (4)	O(10) 2,554 (10)	O(12) 2,510 (9)	O(13)		
O(9) <u>1,621 (7)</u> 111,3 (4)	O(10) 2,554 (10)	O(12) 2,510 (9)	O(13)		
<u>1,621 (7)</u> 111,3 (4)	2,554 (10)	2,510 (9)	2 101 (0)		
111,3 (4)	1 470 (7)		2,484 (8)		
	1,470(7)	2,467 (10)	2,573 (8)		
101,3 (3)	105,6 (4)	1,625 (8)	2,542 (11)		
106,1 (4)	121,1 (4)	109,6 (4)	1,485 (6)		
Tétraèdre $P(2)O_4$					
O(6)	O(8)	O(9)	O(11)		
1,605 (7)	2,484 (10)	2,477 (11)	2,519 (9)		
106,8 (4)	1,488 (7)	2,501 (10)	2,546 (10)		
100,9 (4)	107,7 (4)	1,607 (7)	2,526 (9)		
110,2 (4)	119,2 (4)	110,5 (4)	1,465 (7)		
Tétraèdre P(3)O₄					
O(3)	O(6)	O(7)	O(12)		
1,494 (7)	2,547 (8)	2,562 (11)	2,557 (10)		
109,7 (4)	1,618 (7)	2,504 (11)	2,509 (11)		
118,8 (4)	107,7 (4)	1,481 (9)	2,503 (11)		
110,2 (4)	101,4 (4)	107,5 (4)	1,622 (8)		
P(2) 127, P(3) 126, P(3) 129,	0 (4) 7 (4) 8 (5)	P(1)-P(2) P(1)-P(3) P(2)-P(3)	2,889 (3) 2,902 (4) 2,920 (3)		
	$\begin{array}{c} 111,3 (4) \\ 101,3 (3) \\ 106,1 (4) \\ 00_{4} \\ 0(6) \\ 1,605 (7) \\ 106,8 (4) \\ 100,9 (4) \\ 110,2 (4) \\ 00_{4} \\ 0(3) \\ \frac{1,494 (7)}{109,7 (4)} \\ 118,8 (4) \\ 110,2 (4) \\ 0(2) \\ 127, \\ P(3) \\ 126, \\ 0(3) \\ 129,$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		

Tableau 3. Distances Te-O (Å) et angles O-Te-O (°) dans l'anion octaédrique TeO₆

$\begin{array}{cccccccc} O(1)-Te-O(2) & 91,1 & (3) & O(2)-Te-O(15) & 88,7 & (3) \\ O(1)-Te-O(4) & 175,9 & (3) & O(4)-Te-O(5) & 86,3 & (3) \\ O(1)-Te-O(5) & 89,6 & (3) & O(4)-Te-O(14) & 87,7 & (3) \\ O(1)-Te-O(14) & 92,0 & (3) & O(4)-Te-O(15) & 93,5 & (3) \\ O(1)-Te-O(15) & 90,6 & (3) & O(5)-Te-O(14) & 93,0 & (3) \\ O(2)-Te-O(4) & 89,2 & (3) & O(5)-Te-O(15) & 174,8 & (3) \\ O(2)-Te-O(5) & 86,2 & (3) & O(14)-Te-O(15) & 92,1 & (3) \\ O(2)-Te-O(5) & 90,1 & (3) & (3) & (3) & (3) & (3) \\ O(2)-Te-O(5) & 90,1 & (3)$	Te-O(1) 1,9	23 (7)	Te-O(5)	1,933	(7)
	Te-O(2) 1,9	05 (6)	Te-O(14)	1,919	(6)
	Te-O(4) 1,9	25 (7)	Te-O(15)	1,918	(7)
O(2) - IC - O(3) = O(3) = O(13) = 22, I(3)	O(1)-Te-O(2) O(1)-Te-O(4) O(1)-Te-O(5) O(1)-Te-O(14) O(1)-Te-O(15) O(2)-Te-O(4) O(2)-Te-O(5)	91,1 (3) 175,9 (3) 89,6 (3) 92,0 (3) 90,6 (3) 89,2 (3) 86,2 (3)	O(2)-Te-(O(4)-Te-(O(4)-Te-(O(4)-Te-(O(5)-Te-(O(5)-Te-(O(14)-Te-(O(14)-Te-(D(15) D(5) D(14) D(15) D(14) D(14) D(15) -O(15)	88,7 (3) 86,3 (3) 87,7 (3) 93,5 (3) 93,0 (3) 174,8 (3) 92,1 (3)

Tableau 4. Distances Rb-O (Å) dans les polyèdres de coordination RbO_n

Rb(1)–O(1)	3,011 (5)	Rb(2) - O(1)	3,300 (7)
Rb(1) - O(2)	3,221 (8)	Rb(2)-O(2)	2,900 (6)
Rb(1)O(5)	3,430 (7)	Rb(2)-O(8)	2,949 (7)
Rb(1)–O(8)	3,068 (6)	Rb(2)–O(10)	3,098 (7)
Rb(1)–O(10)	2,807 (8)	Rb(2)–O(10)	2,870 (5)
Rb(1)–O(11)	3,112 (7)	Rb(2) - O(11)	3,068 (9)
Rb(1)-O(11)	2,847 (8)	Rb(2) - O(12)	3,061 (7)
Rb(1)–O(13)	2,955 (8)	Rb(2)-O(W)	3,413 (9)
Rb(3)-O(4)	3,210 (7)	Rb(3)–O(14)	3,341 (7)
Rb(3) - O(5)	3,130 (7)	Rb(3)–O(14)	3,077 (5)
Rb(3)–O(6)	3,181 (8)	Rb(3)-O(15)	2,991 (7)
Rb(3)O(7)	3,490 (8)	Rb(3)-O(W)	3,057 (9)
Rb(3)–O(13)	2,862 (6)		

deux cycles P_3O_9 et deux octaèdres TeO_6 entre eux, chaque anion étant contenu dans un plan différent. Les atomes Rb(2) associent un couple d'anions TeO_6 et P_3O_9 contenu dans un plan à un autre couple situé dans un plan différent. Les polyèdres Rb(2) O_n et Rb(3) O_n ont une molécule d'eau commune.

Les principales distances Rb-O dans les divers polyèdres de coordination sont données dans le Tableau 4.

Références

- Averbuch-Pouchot, M. T. & Durif, A. (1979). C. R. Acad. Sci. Sér. C, 289, 101-104.
- AVERBUCH-POUCHOT, M. T. & DURIF, A. (1981). Mater. Res. Bull. A paraître.
- AVERBUCH-POUCHOT, M. T., DURIF, A. & GUITEL, J. C. (1979). Mater. Res. Bull. 14, 1219–1223.
- BOUDJADA, N., AVERBUCH-POUCHOT, M. T. & DURIF, A. (1981a). Acta Cryst. B37, 645–647.
- BOUDJADA, N., AVERBUCH-POUCHOT, M. T. & DURIF, A. (1981b). Acta Cryst. B37, 647–649.
- DURIF, A. & AVERBUCH-POUCHOT, M. T. (1981). Mater. Res. Bull. A paraître.
- DURIF, A., AVERBUCH-POUCHOT, M. T. & GUITEL, J. C. (1979). Acta Cryst. B35, 1444–1447.